

Agenda

Oxygenate Blending Overview

- Benefits
- Ethanol via ether vs. Ethanol direct blend

Assessing CO₂ Impacts TAEE/Ethanol Blending

Approach/Modeling

Study Results:

CO₂ Impacts Comparing TAEE and Ethanol

TAEE: *tert*-amyl ethyl ether (2-ethoxy-2-methylbutane) C₇H₁₆O

HARTENERGY

MARCH 23, 2011

Oxygenate Blending Overview

WMARCH 23, 2011ergyconsulting.com HARTENERGY

Oxygenate Blending

Oxygenate blending results in net CO₂ emissions decrease

Lower Carbon Content: Lower Aromatics (Octane): Reduced Refinery Fuel: Lower Energy Content: Increased Refinery H₂ Rqmts:

Lower CO₂ Lower CO₂ Lower CO₂ Higher CO₂ Higher CO₂

Ethanol Blending Overview/Options

Blend via etherification to TAEE

- Replace methanol for TAME with ethanol for TAEE
- Existing ether capacity and infrastructure

Direct blend ethanol

- In finished gasoline or special blend stock (CBOB)
- Blending at terminal level

European TAME Capacity

- Porvoo refinery in Finland (Neste), 116 kt per year (*)
- Aspropyrgos refinery in Greece (Hellenic), 128 kt per year
- Gela, Ragusa refinery in Italy (ENI/Agip), 54 kt per year,
- Sarroch refinery in Italy (Saras), 237 kt per year
- Killingholme refinery in the UK (Total), 65 kt per year
- Feyzin refinery in France (Total) 56 kt per year
- MOL (OMV) in Hungary 100 kt per year
- Petrom (OMV) Petrobrazi refinery in Ploiesti, Romania 50-60 kt per year
- Schwedt (PSK Raffinerie) in Germany, 160 kt per year (TAEE)

(*) This is the original TAME design capacity. The Porvoo unit has been producing TAEE since 2008 with a maximum capacity of 110 kt per year.

Ethanol and Ether Characteristics for Gasoline Blending

- Ether provides benefits of ethanol with other positive impacts
- Ether volatility credit, Ethanol volatility debt
- Ethanol water solubility characteristics preclude blending at refinery – terminal blending
- Ether compatible in distribution system refinery blending
- Higher volume of high octane component (ether) with same volume of ethanol

Ethanol via TAEE vs. Ethanol Direct Blend

Gasoline Blending Properties

	Blending RVP kPa	Octane		Max vol% at
		RON	MON	2.7 wt% O ₂
TAEE	10	112	98	19.6
Ethanol	175*	129	96	7.8
Gasoline	60	95	85	-

HARTENERGY

*Varies with concentration – 5 vol% blend shown

MARCH 23, 2011

Assessing CO₂ Impacts Approach/Modeling

HARTENERGY

MARCH 23, 2011

CO₂ Impacts Quantified

- Changes in gasoline carbon content
- Changes in gasoline volume to maintain constant energy
- Changes in other product carbon content
- Changes in by product production/disposition
- Changes in refinery and merchant plant fuel consumption
- Changes in hydrogen and methanol production

Cases Analyzed

Case	Ethanol Blended
Base Case - No Ethanol	_
Ethanol (direct blend)	3.0 vol%
Ethanol (direct blend)	5.0 vol%
TAEE – no direct blend*	3.0 vol%
TAEE – no direct blend*	5.0 vol%

*All ethanol converted to TAEE

Blending Refinery Model

- Industry accepted/standard AspenTech PIMS
- Assessed for 2010 capacities, operations, quality requirements and demand
- Model generated gasoline blends, processing operations
- Model determined gasoline components and qualities
- Model determined crude oil, hydrogen and process fuel requirements

Blending Analytical Approach

- Europe (includes EU, non-EU and Turkey) refinery LP simulation model
- Constant gasoline production energy basis
- Final gasoline volume varied (to keep final energy constant)
- Constant other major refined product energy basis
- Crude volume and LPG/Coke allowed to vary
- Study year 2010, 60 kPa gasoline no RVP waiver, constant refinery capacity (except alkylation in ethanol cases)

Study Results

- Previous study showed CO₂ benefit of blending ETBE*
- Current study focuses on higher ether TAEE

*Study on Relative CO₂ Savings Comparing Ethanol and ETBE as a Gasoline Component, Hart Energy, July 2007

TAEE vs. Ethanol

- Lower crude oil/refinery fuel requirements
- Oxygenate reduced refinery octane requirement, in general lower gasoline aromatics
- Aromatics reduction in high TAEE case lower gasoline carbon factor
- Lower gasoline consumption in TAEE cases vs. ethanol cases
- Higher hydrogen requirements in most cases lower reformer runs

Impact on Gasoline Quality

Small impact on aromatics, strong impact on olefins

	Base Case	Ethanol 3 vol%	Ethanol 5 vol%	TAEE 3 vol% EtOH	TAEE 5 vol% EtOH
Specific Gravity	0.74	0.75	0.75	0.75	0.75
Aromatics [vol%]	34.8	34.8	34.8	34.8	33.2
Olefin [vol%]	6.7	6.9	5.9	3.7	4.9
Ethanol [vol%]	-	3.0	5.0	-	-
TAEE [vol%]	_ (1)	-	-	7.9	12.7

¹MTBE = 1.3 vol%; TAME = 0.4 vol%

Energy/CO₂ Characteristics

	Base Case	Ethanol 3 vol%	Ethanol 5 vol%	TAEE 3 vol% EtOH	TAEE 5 vol% EtOH
Gasoline Energy Content [MJ/kg]	31.69	31.59	31.51	31.74	31.54
Gasoline Consumption [million tons/year]	102.24	103.19	103.98	102.93	103.57
Gasoline Carbon Factor	0.866	0.859	0.853	0.858	0.850
Process Fuel [PJ/year]*	1,860	1,850	1,840	1,850	1,830

*Refinery fuel plus merchant methanol plant fuel

CO₂ Emission Reduction

Gasoline Consumption Refinery fuel H2 Production MeOH & Other Impact

Conclusions

- Ethanol and TAEE both result in reduction of CO₂
- TAEE option vs. direct blend ethanol results in reduced fuel consumption and crude oil requirements
- TAEE option results in lower overall CO₂ emissions than direct blend ethanol
- TAEE can be used with ethanol direct blend option

Thank you!

Dr. Petr Steiner, Director, Refining; Russia & CIS Expert <u>psteiner@hartenergy.com</u>; +32.2.287.0823

HARTENERGY

Terry Higgins, Executive Director, Refining & Special Studies <u>thiggins@hartenergy.com</u>; +1.703.891.4815