

Dr. Walter R. Mirabella

President of Renewable Sources Group - Federchimica Board Member of Italian Biofuels Technology Platform Chairman Biofuels of European Fuel Oxygenates Association

> 2nd Green Refining & Petrochemicals Forum Dubrovnik - Croatia – 17 June 2011

Italian Bio-fuels Platform: Organizational Structure

http://www.unibo.it/Portale/Ricerca/Servizi+Docenti+Ricercatori/finanzeuropei/biofuelsitalia.htm

Federchimica and Italian Chemical Industry

Federchimica is the National Federation of Chemical Industry.

Chemical Industry Italy:

- Enterprises 2900
- Production Units **3500**
- Turn-over (2009) (*G*€) **46**
- Employees **119.000**

Federchimica:

- Member Companies 1.300
- Employees **90.000**
- Sector Groups **41**
- Associations **16**
- Enterprises w/i GFR 18

Federchimica is member of **Confindustria** and **CEFIC**

www.federchimica.it

Renewable Sources Group¹¹ of Federchimica: Represented Activities

	Renewable Sources	^[*] 18 Enterprises as per March 2011
Energy Uses	Non-Energy Uses	
Bio-Fuels, and Bio-Components for Fuels, Production	Transformation of Renewable Raw Materials	Chemicals for Renewable Energy Industry
- [bio-alcohols (ethanol, buthanol)]	- Additives, Chemical Intermediates	- Biomass
- [bio-ethers (ETBE, TAEE)]	- Starch and Derivatives	- Wind power
- [bio-esters (FAME, FAEE)]	- Biorefineries	- Geothermal
- [BTL (Biomass To Liquid)]	- Oleochemicals	- Hydroelectric
	- Polimers	- Sea energy
	- Bio-cosmetics	- Solar
(<i>complementary</i>) Production of Energy from Renewable Sources		
- Vegetable Oils		
- Bio-gas		

http://www.federchimica.it/Federchimica/AssociazioniSettore/AISPEC.aspx

European Fuel Oxygenates Association

- Non-profit Technical Organisation
- Founded in 1985
- ~ 2/3rd of Total EU Etherification Capacity

Bio-Ether (ETBE) is for Petrol what **Bio-Ester (FAME) is for Gasoil**

Co-blending ETBE & ETOH Key Tool for EU Member States to Address Bio-energy Challenge: The Example of Germany

Legal "Bio-Drivers"

- EU Renewable Energy Directive (2020)
 ≥ 10% bio-energy in fuels
- EU Fuel Quality Directive (2020)
 ≥ 6% CO₂ emissions reduction in fuels WTW
- DE National Bio-energy Obligation
 - ≥ 2.80% in Petrol (2009 2014)
 - ≥ 4.40% in Gasoil (2007 2014)
 - ≥ 6.25% in Petrol + Gasoil (2010 2014)
- DE Non-compliance Penalty (2011)
 - 43 €/GJ^[*] for Petrol
 - 19 €/GJ^[*] for both Gasoil and cumulative (P+G)

Addressing RED & FQD EU Directives Challenge

What	10% Bio-energy in Fuels (RED)	
	6% CO ₂ Saving (FQD)	
How	CO ₂ Reduction Effectiveness of Bio-components	
	High Bio-components Blending Percentage	
	Exploitation "best seller" Petrol Grade (Protection Grade)	
Challenge	Consumers Acceptance of High-Bio Grades (E10)	
	Existing Vehicle/Engines Compatibility/Operability	
	Fuel Specifications Limits (Oxygenates/Oxygen/FAME)	
	Financial Implications (Costs/Economics)	
Solution	Adopting Consolidated Solutions (Fuel-Ethers)	
	Maximizing Actual Bio-energy Blending within E5	
	Optimizing Logistics & Minimizing Investments (ETBE-BOB)	
	Capturing Bio-components' Well-to-Wheels CO ₂ Saving Potential	
	Harvesting Bio-components' Synergetic "Non-linear" Effects	

ETBE: A Multifaceted Benefits Carrier

..and "Co-blending" further offers Additional Specific Benefits!

Blending more Bio-energy within Petrol Specs Limits

Capturing Bio-components' Well-to-Wheels CO₂ Saving Potential

Minimizing Quality "Give-away" and fossil base-stock cost, via ETBEcontaining "Dual BOB" for E5/E10

Harvesting Synergetic "Non-linear" Effects of Bio-components

German Bio-energy Targets and E5 Blend "Options"

Residual Gap to cumulative target (excluding B100 and E85 contribution)

53% more bio-energy into E5 via "Co-blending"

- Residual contribution from biodiesel exceeding bio-energy cumulative target in gasoil (B7)
- Maximum bio-energy contribution
- Residual Gap to cumulative target (excluding B100 and E85 contribution)

53% more bio-energy into E5 via "Co-blending"

E5: "Co-blending" Enables Significant Non-compliance Penalty Saving

[1] On top of what achievable with 5%v/v ETOH directly blended into E5 "Protection Grade"

[2] Example based on an average refinery petrol production of 1.5 million tons per year

ETBE: Two Relevant CO₂ Saving Contributions

pressure, distillation characteristics and octane contribution, affecting fuel formulation, reduce refinery operations' CO₂ emissions, by reducing carbon and aromatics content as well as the use of refinery fuel.

at current ETS value of 20 €/T_{CO2}

ETBE Further Reduces CO₂ Emissions

CE-Delft October 2007

HART July 2007

"The use of bio-ETBE reduces refining crude-oil need and processing intensity, requires less fuel and, implying relevant petrol composition changes, allows the reduction of carbon factor and lesser CO_2 emissions"

CE Delft Solutions for environment, economy and te ch nolog y ETBE and Ethanol: A Comparison of CO₂ Savings Oude Delft 180 2611 HH Delft The Netherlands tel: +31 15 2 150 150 fax: +31 15 2 150 151 e-mail: ce@ce.nl website: www.ce.nl KvK 27251086 Report Delft, October 2007 Author(s): Harry Croezen Bettina Kampman Gerdien van de Vreede Maartie Sevenster

"This study indicated that, when bio-ETBE is used, the resulting modification of refinery operations determine a significant reduction of greenhouse gases emissions"

IFEU August 2008

The use of ETBE can allow the saving of 4 times the primary energy required to produce its fossil alternative. IFEU recommends to exploit the whole potential of bio-ETBE"

BOBcb = ETBE-containing E5/E10-dual-BOB that, when blended with 5%v/v ETOH, yields E5 @ 2.7%m/mO₂ BOBdb = Oxy-free E5/E10-dual-BOB, yielding E5 with 5%v/v ETOH, and E10 with 10%v/v ETOH E5cb = E5 petrol (protection grade) "co-blend" ETBE/ETOH – 2.7%m/m O₂ E10cb = E10 petrol "co-blend" ETBE/ETOH – 3.7%m/m O₂ E5db = E5 petrol containing only ETOH @ 5%v/v E10bd = E10 petrol containing only ETOH @ 10%v/v

BOBcb = ETBE-containing E5/E10-dual-BOB that, when blended with 5%v/v ETOH, yields E5 @ 2.7%m/mO₂ BOBdb = Oxy-free E5/E10-dual-BOB, yielding E5 with 5%v/v ETOH, and E10 with 10%v/v ETOH

Conservatively neglecting positive non-linear "co-solvency" effects of ETBE

E5-Co-blend E5-ETOH-ony

[*]

In order to be used for both E5 and E10 petrol grades, and due to the nonlinear blending volatility behaviour of ethanol, the oxygen-free dual-BOB has to feature lower than specification volatility, to ensure RVP specs compliance of E5. This unwanted effect doesn't occur with ETBE-containing dual BOB.

Co-blending Addresses ETOH E70 Boost

Harvesting the synergy of co-blending bio-ETBE and bio-Ethanol, represents an effective, immediate and practical avenue to address both EU and MSs ambitious bio-fuel targets. It actually enables higher bio-energy content, while both enhancing environmental benefits and improving operators flexibility