

Dr. Walter R. Mirabella

President of Renewable Sources Group - Federchimica Chairman Biofuels of European Fuel Oxygenates Association Board Member of Italian Biofuels Technology Platform

Biofuels International Expo & Conference

Antwerp – Belgium 17 Nov2011

BioFuels: 3 Key Entities

Italian
Chemical
Industry
Federation

European
Fuel
Oxygenates
Association

Italian
Biofuels
Technology
Platform

Bio-Ether (ETBE) is for Petrol what Bio-Ester (FAME) is for Gasoil

European Fuel-Ethers Production Capacities 2011 (KT/Y)

ചർമി∿~

Addressing RED & FQD EU Directives Challenge

What	10% Bio-energy in Fuels (RED)
	6% CO ₂ Saving (FQD)
Challenge	Sustainability: a Broader Concept
	Full Obligation but Partial "Control" ?
	Petrol/Gasoil - Supply/Demand Unbalance
	Balkanization of Implementation Rules in 27 EU Member States
	Consumers Resistance to "High-Bio" Grades (E10)
	Vehicle/Engines Compatibility/Operability
	Fuel Specifications Limits (Oxygenates/Oxygen/FAME)
How	CO ₂ Reduction Effectiveness of Bio-components
	High Bio-components Blending Percentage
	Exploitation "best seller" Petrol Grade (Protection Grade)
Solution	Adopting Immediately Available Consolidated Solutions
	Maximizing Actual Bio-energy Blending within E5
	Optimizing Logistics: ETBE "Dual-BBEB" [*]
	Capturing Bio-components' Well-to-Wheels CO ₂ Saving Potential
	Harvesting Bio-components' Synergetic "Non-linear" Effects

Two "Interactive" EU Directives

Bio-component to Address Broader Sustainability

Clean Air, Water & Land Emissions Reductions No Waste, Releases & Spills Biodiversity

Access to Potable Water
Crisis Management
Environmental Justice
Environmental Regulations
Global Climate Change
Safety & Health

Life-Cycle Management Product Stewardship Products to Services Resource Efficiency

Bearable

Viable

SOCIAL

Community Outreach
Diversity
Human Rights
Indigenous Communities
Labour Relations

Business Ethics
Job Creation
Local Economic Impacts
Security
Skills Enhancement
Social Investments

Equitable

ECONOMIC

Capital Efficiency
Growth Enhancement
Innovation
Margin Improvement
Risk Management
Shareholders Return

FQD & Refiners big Challenge: Full Obligation vs. Partial "Control"

- 6% of total, - 40% of O.I. bit, - 60% of Refining one!

Operations Energy Efficiency

Bio-Fuels Blending

Carbon
Capturing
& Storage

Petrol/Gasoil - Supply/Demand Unbalance: EU Gasoil/Petrol Ratio Growing

Source: Wood Mackenzie, 2011

حمراهها م .∧Ω 69 Balkanization of National Bio-Blending Obligations **IRELAND NORWAY SWEDEN FINLANDI 4,0%**(*V/V*) 3,5%(V/V) **5,75%**(e/e) **4.0**(*e*/*e*) ٥ Parallel Targets Indicative Pertrol & Gasoil UNITED KINGDOM 3,5%(\(\frac{1}{\psi}\/\psi\) NETHERLANDS **POLAND 4,0%** (e/e) **5,75%** (e/e) Parallel Targets FRANCE **Indicative** Pertrol & Gasoil **7,0%**(*e*/*e*) Parallel Targets Pertrol & Gasoil **CZECH REPUBLIC GERMANY** Gasoil 4,5% (v/v) Gasoil 4,4% (e/e) **SPAIN** Pertrol 3,5% (v/v) Pertrol 2,8% (e/e) 3,9% (e/e) Ind. **5.83**% (e/e) Cum. **4.0%**(*e*/*e*) AUSTRIA **SLOVAKIA** Obiettivo cumulativo **PORTUGAL** Gasoil 6,3% (e/e) **5,75%** (e/e) Gasoil 7,0% (v/v) Pertrol 3,4% (e/e) Pertrol + Gasoil *Indicative*

Consumers Resistance to "High-Bio" Grades (E10)

Consumers Psychological Resistance to E10

"My car is on the E10 not-suitable list by OEM"

"It might damage my car"

"It will compromise my vehicle warranty"

"It will worsen car performances"

"It would provoke engine efficiency loss"

"I buy litres, but I need energy (oxygen doesn't burn)"

"If «they» discount it, there must be something dirty"

"High bio compete with food and feed"

"This thing is too new: let others be the guinea pigs"

Vehicle/Engines Compatibility/Operability

Fuel filter blockage

Galvanic corrosion

Enleanment

Drivability

Deposit formation

Material compatibility

ETBE: A Multifaceted Benefits Carrier

..and "Co-blending" further offers Additional Specific Benefits!

Blending more Bio-energy within Petrol Specs Limits

Capturing Bio-components' Well-to-Wheels CO₂ Saving Potential

Minimizing Quality "Give-away" and fossil base-stock cost, via ETBE-containing "Dual BBEB"[*] for E5/E10

Harvesting Synergetic "Non-linear" Effects of Bio-components

Exploiting Bio-related Petrol Specifications Limits (E5)

53% more bio-energy into E5 via "Co-blending"

German Example (1): Bio-energy Targets and E5 Blend "Options"

Residual Gap to cumulative target (excluding B100 and E85 contribution)

German Example *(2)*: 53% more bio-energy into E5 via "Co-blending"

- Residual contribution from biodiesel exceeding bio-energy cumulative target in gasoil (B7)
- Maximum bio-energy contribution
- Residual Gap to cumulative target (excluding B100 and E85 contribution)

German Example (3): E5: "Co-blending" Enables Significant Non-compliance Penalty Saving

^[1] On top of what achievable with 5%v/v ETOH directly blended into E5 "Protection Grade"

^[2] Example based on an average refinery petrol production of 1.5 million tons per year

"Dual" BOBs for E5 and E10

BOBcb = ETBE-containing E5/E10-dual-BBEB that, when blended with 5%v/v ETOH, yields E5 @ 2.7%m/mO₂ BOBdb = Oxy-free E5/E10-dual-BOB, yielding E5 with 5%v/v ETOH, and E10 with 10%v/v ETOH

E5cb = E5 petrol (protection grade) "co-blend" ETBE/ETOH – 2.7%m/m O_2

E10cb = E10 petrol "co-blend" ETBE/ETOH - 3.7%m/m O₂

E5db = E5 petrol containing only ETOH @ 5%v/v

E10bd = E10 petrol containing only ETOH @ 10%v/v

Co-blending: HC Blend-stock RVP & MON Savings

BOBcb = ETBE-containing E5/E10-dual-BBEB that, when blended with 5%v/v ETOH, yields E5 @ 2.7%m/mO₂ BOBdb = Oxy-free E5/E10-dual-BOB, yielding E5 with 5%v/v ETOH, and E10 with 10%v/v ETOH

Conservatively neglecting positive non-linear "co-solvency" effects of ETBE

Co-blending avoids RVP "give-away" on E5

[*] In order to be used for both E5 and E10 petrol grades, and due to the non-linear blending volatility behaviour of ethanol, the oxygen-free dual-BOB has to feature lower than specification volatility, to ensure RVP specs compliance of E5. This unwanted effect doesn't occur with ETBE-containing dual BBEB.

Co-blending Addresses ETOH E70 Boost

ETBE Further Reduces CO₂ Emissions

HART July 2007

"The use of bio-ETBE reduces refining crude-oil need and processing intensity, requires less fuel and, implying relevant petrol composition changes, allows the reduction of carbon factor and lesser CO₂ emissions"

CE-Delft October 2007

"This study indicated that, when bio-ETBE is used, the resulting modification of refinery operations determine a significant reduction of greenhouse gases emissions"

IFEU August 2008

"Best results by far are obtained when ethanol is converted to bio-ETBE.

The use of ETBE can allow the saving of 4 times the primary energy required to produce its fossil alternative.

IFEU recommends to exploit the whole potential of bio-ETBE"

ETBE: Two Relevant CO₂ Saving Contributions

[1]
Key ETBE blending properties, like vapour pressure, distillation characteristics and octane contribution, affecting fuel formulation, reduce refinery operations' CO₂ emissions, by reducing carbon and aromatics content as well as the use of refinery fuel.

[2]
Based on CO₂ cost at current ETS value of 20 €/T_{CO2}

Harvesting Synergetic "Non-linear" Effects of Bio-components

- Increasingly stringent technical and environmental petrol specifications, makes it relevant and urgent to try and fully exploit all the positive characteristics of various blend-stocks used by refiners for formulating finished fuels;
- Several studies have already demonstrated that co-mixing different blend-stocks can yield a better-than-linear blending performance;
- A specially interesting and relevant case is the co-blending of ethanol and ethers (ETBE), considering the key role that these two bio-components play in recent bio-fuels policies;
- Some of the chemical-physical reasons for the distinct synergetic blending effect of those oxygenated molecules comes from their polar nature, as well as from the hydrogen-bonding effects;
- New ad hoc studies are currently under going to better quantify and qualify those effects;
- Petrol specifications that benefit from the «co-blending effect» include volatility (BRVP), distillation curve (E70), octane performance (MON & RON) and water tolerance.

Conclusion

Harvesting the synergy of co-blending bio-ETBE and bio-Ethanol, represents an effective, immediate and practical avenue to address both EU and MSs ambitious bio-fuel targets. It actually enables significantly higher bio-energy content, while both enhancing environmental benefits and improving operators flexibility