

Dr. Walter R. Mirabella European Fuel Oxygenates Association

Polish Bioenergy Market BioPol 2012 Warsaw, Poland 3rd October 2012

Addressing RED & FQD EU Directives

Ambitious Targets

Multiple Challenges

Limited Possibilities

Existing Solution

Challenges (examples)

FQD: Refiners Obligations vs. Actual "Control"

Directives Revision & ILUC

RED: Petrol/Gasoil Supply/Demand Unbalance

Balkanization of EU MS's Implementation Rules

Consumers Resistance to "High-Bio" Grades

Fuel Specifications Limits

FQD & Refiners big Challenge: Full Obligation vs. Partial "Control"

- 6% of total, - 40% of O.I. bit, - 60% of Refining one!

Operations Energy Efficiency

Bio-Fuels Blending

Carbon Capturing & Storage Directives Revision & ILUC (current draft proposal)

2020 Energy Share from Food Crops Biofuels $\leq 5\%$

GHGs Saving Biofuels Produced in Units ≥ 1/7/2012 ≥ 60 %

ILUC Emission Factors (gCO_{2eq}/MJ)

- Cereals and other starch rich crops 12
- Sugars 13
- Oil crops 55

Petrol/Gasoil - Supply/Demand Unbalance: EU Gasoil/Petrol Ratio Growing

- Refineries not designed/structured for current fuels demand ratio
- Petrol export & gasoil import impacting economics & CO₂ emissions (transport)

- Diesel production maximization disoptimising refinery operations & increasing CO₂ emissions
- FAME content specification (7 % v/v) limiting actual bio-blending in diesel

Source: Total 2012

Bio-blending Obligatons in Largest EU Fuel Markets

Consumers Psychological Resistance to E10

"My car is on the E10 not-suitable list by OEM"

"It might damage my car"

"It will compromise my vehicle warranty"

"It will worsen car performances"

"It would provoke engine efficiency loss"

"I buy litres, but I need energy (oxygen doesn't burn)"

"If «they» discount it, there must be something dirty"

"High bio compete with food and feed"

"This thing is too new: let others be the guinea pigs"

Vehicle/Engines Compatibility/Operability

Only Few Possibilities

CO₂ Reduction Effectiveness of Bio-components

High Bio-components Blending Percentage

Exploitation of «best seller» Petrol Grade (E5)

Existing Solution

Adopting Immediately Available Consolidated Options

Maximizing Actual Bio-energy Blending within E5

Optimizing Logistics & Operations

Capturing Bio-components WTW CO₂ Saving Potential

Harvesting Synergetic «Non-linear» Effects

Fuel-Ethers Consumption EU 2010 ~5 million Tons

Source: Fuel Ether Reach Consortium, EFOA

ETBE: A Multifaceted Benefits Carrier

COBLENDING ETBE AND ETHANOL

..and "Co-blending" further offers Additional Specific Benefits!

Blending more Bio-energy within Petrol Specs Limits

Capturing Bio-components' Well-to-Wheels CO₂ Saving Potential

Minimizing Quality "Give-away" and fossil base-stock cost, via ETBEcontaining "DBEB"^[*] for E5/E10

Harvesting Synergetic "Non-linear" Effects of Bio-components

[*] Dual Blend-stock for Ethanol Blending

53% more bio-energy into E5 via "Co-blending"

E5: "Co-blending" Enables Significant Non-compliance Penalty Saving (German Example)

[1] On top of what achievable with 5%v/v ETOH directly blended into E5 "Protection Grade"

[2] Example based on an average refinery petrol production of 1.5 million tons per year

DBEB = Dual Blendstock for Ethanol Blending

DBEB = Dual Blendstock for Ethanol Blending

ETBE Further Reduces CO₂ Emissions

HART July 2007

"The use of bio-ETBE reduces refining crude-oil need and processing intensity, requires less fuel and, implying relevant petrol composition changes, allows the reduction of carbon factor and lesser CO_2 emissions"

CE-Delft October 2007

"This study indicated that, when bio-ETBE is used, the resulting modification of refinery operations determine a significant reduction of greenhouse gases emissions"

IFEU August 2008

	Fieu - Institut für Energie- und Umweltforschung Heidelberg gGmbH
Bioenergie aus Getreide und Zuckerrübe: Energie- und Treibhausgasbilanzen	
Endbericht (Kurzversion)	
lm Auftrag des Verbandes Landwirtschaftliche Biokraftstoffe e.V. (LAB), Berlin	
Heidelberg, 13. August 2008	
"Best results by far are obtained when ethanol is converted to bio- ETBE.	
saving of 4 times the penergy required to pro	orimary duce its
	und Zuckerrübe: Energie- und Treibhausgasbilanzen Endbericht (Kurzversion) Im Auftrag des Verbandes Landwirtschaftliche Biokraftstoffe e.V. (LAB), Berlin Heidelberg, 13. August 2008 "Best results by far are when ethanol is converted

IFEU recommends to exploit the whole potential of bio-ETBE"

[1] Key ETBE blending properties, like vapour pressure, distillation characteristics and octane contribution, affecting fuel formulation, reduce refinery operations' CO_2 emissions, by reducing carbon and aromatics content as well as the use of refinery fuel.

The whole is more than the sum of its parts.

Aristotle, Metaphysica

Harvesting Synergetic "Non-linear" Effects of Bio-components

- Increasingly stringent technical and environmental petrol specifications, makes it relevant and urgent to try and fully exploit all the positive characteristics of various blend-stocks used by refiners for formulating finished fuels;
- Several studies have already demonstrated that co-mixing different blend-stocks can yield a better-than-linear blending performance;
- A specially interesting and relevant case is the co-blending of ethanol and ethers (ETBE), considering the key role that these two bio-components play in recent bio-fuels policies;
- Some of the chemical-physical reasons for the distinct synergetic blending effect of those oxygenated molecules comes from their polar nature, as well as from the hydrogen-bonding effects;
- New ad hoc studies are currently under going to better quantify and qualify those effects;
- Petrol specifications that benefit from the «co-blending effect» include volatility (BRVP), distillation curve (E70), octane performance (MON & RON) and water tolerance.

Several studies confirmed synergy

- "Synergies Between Ethanol and TAME as Gasoline Oxygenates". Sasol. 2002
- "Accurate determination of ether / alcohol octane synergies in specific base fuel matrices". Sasol. 2005.
- "Addition of an azeotropic ETBE/ethanol mixture in eurosuper-type gasolines". Federal University of Rio Grande do Sul. 2006
- "Impact of Simultaneous ETBE and Ethanol Addition on Motor Gasoline Properties". National Technical University of Athens. 2008
- "Volatility and phase stability of petrol blends with ethanol". Institute of Chemical Technology of Czech Republic. 2009

Conclusion

Harvesting the synergy of co-blending bio-ETBE and bio-Ethanol, represents an effective, immediate and practical avenue to address both Ell and MSs ambitious bio-fuel targets. It actually enables significantly higher bio-energy content, while both enhancing environmental benefits and improving operators flexibility